LOW VOLTAGE SUPPLY WIRING

When planning a low voltage supply care must be taken to ensure that wires that interconnect the transformer and the light fixture are of sufficient gauge to permit full voltage to reach the lamps. In addition to voltage drop the wire must be sized to handle the amperage. Many of our linear products have 25 amp circuits and require a minimum of 10 gauge wire.

We recommend that stranded copper be used as it provides less resistance at the connection points than solid copper wire. The wiring connections on the secondary side should be tightly twisted around each other. To calculate the wire gauge needed to carry a given amperage load, at 12 volts supply, for a given distance between the fixture and transformer; please refer to the chart below.

12 VOLT WIRING

		DISTANCES IN FEET												
	WATTS	12	20	40	60	75	100	150	160	180	200	250	280	300
WIRE GAUGE	14	112	67	34	22	18	13	9	8	7	7	5	5	4
	12	178	107	53	36	28	21	14	13	12	11	9	8	7
	10	283	170	85	57	45	34	23	21	19	17	14	12	11
	8	450	270	135	90	72	54	36	34	30	27	22	19	18
	6	716	429	215	143	115	86	57	54	48	43	34	31	29

For example, if a 12 volt system has a load of 300 watts, and the distance is 8 feet from transformer to fixture, then #10 gauge wire will suffice. If the distance is 12 feet, then #8 gauge wire is required.

For loads and distances not on the chart the maximum allowable distance between transformer and fixture without visible voltage drop can be determined by dividing the number associated with the wire gauge by the watts

14Ga. = 1345 # 12Ga. = 2137 # 10Ga. = 3397 # 8Ga. = 5403 # 6Ga. = 8588

Please consult with our engineering department if you need further assistance in planning low voltage circuitry to power our low voltage equipment.

